

# 用縕STRY Of EDUCATHON <br>  

## LEVE

CURRMCUIM

## Foreword

It is acknowledged that thorough planning is essential for effective teaching and learning. Such planning is even more critical today when one considers the limited resources, both human and material, which are available.

The Ministry of Education, through the Secondary School Reform Project (SSRP), has developed curriculum materials that have been designed to improve the quality, equity and efficiency of secondary education. The curriculum materials include Levels 7-9 curriculum guides and teachers' guides for Language Arts, Mathematics, Science, Social Studies, Reading and Practical Activities for Science. These materials have been tested in secondary-age schools nationwide and are considered useful in providing teachers with a common curriculum framework for planning, monitoring and evaluating the quality of teaching and learning. The curriculum materials also provide a basis for continuous student assessment leading to the National Third Form Examination (NTFE).

The initial draft curriculum materials have been subjected to evaluation, by respective Heads of Departments, from all ten Administrative Regions and Georgetown and they have been subsequently revised to reflect the views expressed by teachers.

The revised curriculum materials are now published as National Curriculum documents to provide consistency and support for teachers in the process of planning for an effective delivery of the curriculum. All secondary teachers must ensure that they make good use of these curriculum materials so that the quality of teaching and learning can be improved in all schools.

## Ed Caesar

Chief Education Officer

## PREFACE

This is the Revised Curriculum Guide for Level 7. This document fulfils the objective of making Mathematics accessible to all students at Level 7. Hence teachers of Level 7 students should make a conscious effort to see how best they could utilize the ideas contained to plan for instruction. This document can serve as a focal point for departmental and regional subject committee meetings, where methodologies and strategies for both teaching and assessing are deliberated on. Lessons should be delivered in an environment in which there is opportunity for active and creative participation by both students and teacher. This Guide has a direct focus on an integrated approach to curriculum delivery, in which the teacher is not unduly restricted by the subject content. The student's total development as a person should be of foremost concern to the teacher.

In the curriculum process, feedback is a necessary condition for change and improvement, and I would urge all of our mathematics teachers to provide such feedback to the curriculum staff as they visit to provide support that will enhance your classroom teaching.

## Mohandatt Goolsarran

Head
Curriculum Development and Implementation Unit
National Centre for Educational Resource Development
MARCH 2002

## ACKNOWLEDGEMENTS

The following persons were involved in writing and revising the Level 7 Curriculum Guide:

| Jean Holder-Lynch | Vice Principal (Administration) <br> Cyril Potter College of Education |
| :--- | :--- |
| Joan Persaud | Deputy Headmistress <br> Annandale Secondary School |
| Mohan Lall Sookdeo | Deputy Headmaster <br> Charity Primary School |
| Dirk McAulay | Brickdam Secondary School |
| S. Binda | Queenstown Community High School (Retired) |
| Shirley Klass | Subject Specialist, Mathematics, NCERD (Retired) |
| Alicia Fingal | Assistant Chief Education Officer, Primary (Retired) |
| Flavio Camacho | Subject Specialist <br> Mathematics (SSRP) |
| Joseph Mckenzie | Senior Subject Specialist <br> Mathematics (SSRP) |

LANGUAGE OF SETS


| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  | - Tabulation or Listing, e.g. <br> \{January, June, July | - Describing a set by listing the elements. | - by listing the elements? | Environmental Education, e.g. listing trees according to their usage. |
|  |  |  |  |  | When listing sets: |  |  |  |
|  |  |  |  |  | - a comma is placed between one element and the next. |  |  |  |
|  |  |  |  |  | - an element is not repeated. |  |  |  |
|  |  |  |  |  | - the elements are enclosed in curly brackets, etc. |  |  |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  | - Using a Loop, e.g. January | - Drawing a loop around the elements. | - by drawing a loop around the elements? | Environmental Education, e.g. grouping of tourist resorts, pollutants, solid waste, etc. |
| Well-defined Sets |  |  | Differentiate between sets that are well defined and sets that are not well defined. | Appreciate the characteristics of a welldefined set. | Well defined sets, e.g. <br> - A set of all the letters of the English alphabet $=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \ldots \mathrm{z}\}$ <br> - A set of all even numbers between 0 and $11=$ $\{2,4,6,8,10\}$ | Displaying welldefined sets. | Can students differentiate between sets that are well defined and sets that are not well defined? | Agriculture Science, e.g. Edible Roots = \{carrots, radish, cassava, sweet potatoes $\}$ |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Elements of a Set | Use the symbols " $\in$ " and " $\neq$ ". | List the elements of a set. | Differentiate between the symbols " $\in$ " and " $\neq$ ". |  | Elements of a set. <br> The symbols " $\in$ " and " $\neq$ ". | Specifying the elements of a set by listing them. | Can students: <br> - list the elements of a set? | Agriculture Science, e.g. Listing the tools used for harvesting. |
|  |  |  |  |  |  | Discussing the meaning of the symbols " $\epsilon$ " and " $\neq "$ | - differentiate between the symbols " $\in$ " and " $\neq$ "? | Agriculture Science, e.g. trowel is not an element of the set of |
|  |  |  |  |  |  | Using the symbols " $\epsilon$ " and " $\notin$ " to show membership and non-membership of sets. | - use the symbols " $\in$ " and " $\neq "$ to show membership and nonmembership of sets? | harvesting tools can be written as: trowel $\notin$ \{harvesting tools\} |
| The Empty Set |  | Identify the empty set. |  | Appreciate the concept of the empty set. | The empty set | Displaying examples of the empty set. | Can students: <br> - identify the empty set? | Language, e.g. oral discussion on the characteristics of the empty |
|  | Use the symbols \{ \} or $\varnothing$. |  |  |  | The symbols that represent the empty set are $\}$ or $\varnothing$. | Using the symbols \{ \} or $\varnothing$ to represent the empty set. | - use the symbols \{ \} or $\varnothing$ to represent the empty set? | set. |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Equal Sets |  | Identify equal sets. |  |  | Equal sets: two sets A and B | Displaying examples of | Can students identify equal | Social Studies, e.g. Set A = \{All |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  | Use the symbol " $\Leftrightarrow$ ". |  |  |  | The symbol " $\Leftrightarrow$ ", e.g. Set A is equivalent to Set B is written as $A \Leftrightarrow B$. | Using the symbol " $\Leftrightarrow$ " to represent equivalent sets.. | Can students use the symbol " $\Leftrightarrow$ " to represent equivalent sets? |  |
| Subsets of a Set | Construct subsets of a given set. |  | Differentiate between a set and subsets of the set. | Enjoy writing down the subsets of a set. | Subsets of a set, e.g. $A=\{a, b, c\}$ Subsets of A are: $\{a, b, c\},\{a\}$, $\{b\},\{c\}, \varnothing$. | Small group activities: <br> - writing the subsets of given sets. <br> - observing the difference between a set and the subsets of a set. | Can students <br> - write down all the subsets of a given set? <br> - differentiate between a set and subsets of the set? | Social Studies, e.g. collecting, classifying and identifying subsets of given groups. |
| Universal Set |  | Identify universal sets. | . |  | Universal set <br> The universal set is represented by the symbol U . | Showing on chart examples of the universal set. | Can students: <br> - identify the universal set? | Environmental Education, e.g. $\mathrm{U}=\{$ The environment $\}$ |
|  |  | Describe universal sets. |  |  |  | Describing universal sets. | - describe universal sets? <br> Unit Test | Social Studies, e.g. $U=\{$ The Amerindian tribes in Guyana\} |

## NUMBER THEORY




| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Factors |  | List the factors of a number. |  |  | Factors of numbers, e.g. $\{1,2,3,6,12\}$ are factors of 12 . | Small group activities: <br> Listing the factors of given numbers. | Can students list the factors of a number? |  |
|  |  |  |  | Practise finding factors of numbers. |  | Encouraging students to practise finding factors of numbers. | Do students practise finding factors of numbers? |  |
| Multiples |  | List the multiples of a number. |  |  | Multiples of numbers, e.g. the multiples of 12 are $24,36,48, \ldots$ | Small group activities: <br> Listing the multiples of given numbers. | Can students list the multiples of a number? |  |
|  |  |  |  | Practise finding the multiples of numbers. |  | Encouraging students to practise finding the multiples of numbers. | Do students practise finding the multiples of numbers? |  |



| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Indices |  | Write the product of a number in index form. | Express a number in index form. | Obtain satisfaction from writing the product of numbers in index form. <br> do | Product of a number in index form, e.g. $2 \times 2 \times 2=2^{3}$ <br> Expression of a number in index form, e.g. $4=2^{2}$. | Writing the product of a number in index form. <br> Expressing numbers in index form. | Can students write the product of a number in index form? <br> Can students express a number in index form? | Environmental Education, e.g. the area of a classroom expressed in index form: $64 \mathrm{~m}^{2}$. |
| Highest <br> Common <br> Factor <br> (HCF) |  |  | Determine the HCF of numbers. <br> Determine the LCM of numbers. | . | Highest <br> Common Factor. <br> Lowest Common Multiple. | Small group activities: <br> - Finding the HCF of given numbers. <br> - Finding the LCM of given numbers. | Can students: <br> - find the HCF of numbers? <br> - find the LCM of numbers? |  |
| Lowest Common Multiple (LCM) |  |  |  | Practise finding the HCF and LCM of numbers. |  | Encouraging students to practise finding the HCF and LCM of numbers. | Do students practise finding the HCF and LCM of numbers? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Commutative Law |  | Identify the commutative law. |  | Appreciate the commutative law. | The Commutative Law for + and $\times$. <br> Examples: $\begin{aligned} & 2+3=3+2 \\ & 2 \times 3=3 \times 2 \end{aligned}$ <br> The commutative law does not apply to subtraction and division. | Showing on chart examples of the commutative law. | Can students identify the commutative law? |  |
| Associative Law |  | Identify the associative law. |  | Appreciate the associative law. | The Associative Law for + and $\times$. <br> Examples: $\begin{aligned} & 2+(3+4)= \\ & (2+3)+4 \\ & 2 \times(3 \times 4)= \\ & (2 \times 3) \times 4 \end{aligned}$ <br> The associative law does not apply to subtraction and division. | Showing on chart examples of the associative law. | Can students identify the associative law? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  | Differentiate between the commutative and associative laws. |  |  | Discussing the difference between the commutative and associative laws. | Can students differentiate between the commutative and associative laws? |  |
| The Distributive Law | Use the distributive law to simplify calculations. | Identify the distributive law. |  |  | The Distributive Law, e.g. $\begin{aligned} & 4 \times(6+3)= \\ & (4 \times 6)+(4 \times 3)= \\ & 24+12=36 \end{aligned}$ <br> The law has two operations, multiplication and addition. | Showing on chart examples of the distributive law. <br> Using the distributive law to simplify calculations. | Can students: <br> - identify the distributive law? <br> - use the distributive law to simplify calculations? <br> Unit Test |  |

COMPUTATION 1



| Topic | Objectives |  |  |  | Content | Activities/ Materials/ | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  |  | Strategies |  |  |
|  |  |  |  |  |  | Small group activities: | Can students |  |
|  |  |  | Add decimals. |  | Addition of decimals. | - Adding decimals. | - add decimals? |  |
|  |  |  | Subtract decimals. |  | Subtraction of decimals. | - Subtracting decimals. | - subtract decimals? |  |
|  |  |  |  | Practise adding and subtracting decimals. |  | Encouraging students to practise adding and subtracting decimals. | Do students practise adding and subtracting decimals? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |


|  |  |  | Multiply a decimal by a decimal. <br> Divide a decimal by a decimal. | Practise multiplyin g and dividing a decimal by a decimal. | Multiplication of decimals, e.g. $0.6 \times 0.4=0.24$ <br> Division of decimals, e.g. $\begin{aligned} & 4.48 \div 0.4= \\ & \frac{4.48}{0.4}= \\ & \frac{4.48 \times 10}{0.4 \times 10}= \\ & \frac{44.8}{4}=11.2 \end{aligned}$ | Small group activities: <br> - Multiplying <br> a <br> decimal by a decimal. <br> - Dividing a decimal by a decimal. <br> Encouraging students to practise multiplying and dividing a decimal by a decimal. | Can students <br> - multiply a decimal by a decimal? <br> - divide a decimal by a decimal? <br> Do students practise multiplying and dividing a decimal by a decimal? <br> Unit Test |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## MEASUREMENT 1

| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| SI System of Units |  | Identify SI units of length. |  |  | SI units of length, e.g. kilometre hectometre decametre metre | Showing on chart: <br> - SI units of length. | Can students: <br> - identify SI units of length? |  |


|  |  | Identify the prefixes used in SI units of length. <br> Identify the symbols used for SI units of length. |  |  | decimetre centimetre millimetre. <br> Prefixes used in SI units of length, e.g. kilo, hecto, deca, deci, centi, milli. <br> Symbols used for SI units of length, e.g. km, hm, dam. $\mathrm{m}, \mathrm{dm}, \mathrm{cm}$, mm . | - prefixes used in SI units of length. <br> - symbols used in SI units of length. | - identify prefixes used in SI units of length? <br> - identify the symbols used in SI units of length? |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  | Convert a measurement from one SI unit to another. |  | Converting measurement from one SI unit to another. <br> To convert measurement from one SI unit to another, it is necessary only to multiply or divide by a power of 10, e.g. $8 \mathrm{~m}=$ $8 \times(10 \times 10) \mathrm{cm}$ $=800 \mathrm{~cm}$. | Converting a measurement from one SI unit to another. | Can students: <br> - convert a measurement from one SI unit to another? |  |
|  | Estimate and measure line segments. |  |  | Appreciate the need for accurate measurements. | Estimation and measurement of line segments. | Estimating and measuring line segments. | - estimate and measure line segments accurately? | Integrated Science, e.g. measuring the length of objects. |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Perimeter of Regular Shapes |  |  | Explain the meaning of the word perimeter. |  | Perimeter of regular plane shapes. | Discussing perimeter. | Can students: <br> - explain the meaning of the word perimeter? |  |
|  |  |  | perimeter of regular plane shapes. |  | Calculation of the perimeter of regular plane shapes. | Calculating the perimeter of regular shapes by finding the length of one side and then multiplying it by the number of sides. | - calculate the perimeter of regular plane shapes? |  |
| Perimeter of Irregular Shapes |  |  | Calculate the perimeter of irregular shapes. |  | Calculation of the perimeter of irregular shapes. | Calculating the perimeter of irregular shapes. | Can students calculate the perimeter of irregular shapes? | Agriculture Science, e.g. calculating the perimeter of the school's agriculture plot. |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Area |  | Calculate the area of a square, rectangle and triangle. |  |  | Area of a square, rectangle and triangle. | Calculating the area of squares, rectangles and triangles. | Can students: <br> - calculate the area of squares, rectangles and triangles? | Agriculture Science, e.g. calculating the area occupied by the school's agriculture |
|  |  | Calculate the area of irregular shapes. |  | Enjoy calculating the area of irregular shapes. | Area of irregular shapes. | Drawing irregular shapes on graph paper and finding their areas by counting the squares that fall inside the shapes. | - calculate the area of irregular shapes? | plot. |
|  |  |  |  |  |  |  | Unit Test |  |

## ALGEBRA 1

| Topic | Objectives |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of <br> Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |




| Topic | Objectives |  |  |  | Content | Activities/ Materials/ | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  |  | Strategies |  |  |
| Subtraction of Directed Numbers |  |  |  |  |  | Small group activities: | Can students: |  |
|  |  |  |  |  |  | Using semi circular cards labelled: |  |  |
|  |  |  | Subtract a positive integer from a positive integer. | Appreciate subtracting a positive integer from a positive integer correctly. | Subtraction of a positive integer from a positive integer, e.g. $(+13)-(+9)=(+4)$ | - "+" to subtract a positive integer from a positive integer. | - subtract a positive integer from a positive integer correctly? |  |
|  |  |  | Subtract a negative integer from a negative integer. | Appreciate subtracting a negative integer from a negative integer correctly. | Subtraction of a negative integer from a negative integer, e.g. $(-4)+(2)=(6)$ | - "-" to subtract a negative integer from a negative integer. | - subtract a negative integer from a negative integer correctly? |  |
|  |  |  | Subtract a positive integer from a negative integer. | Appreciate subtracting a positive integer from a negative integer correctly. | Subtraction of a positive integer from a negative integer, e.g. $(3)-\left({ }^{+} 7\right)=(-10)$ | - "+" and "-"to subtract a positive integer from a negative integer. | - subtract a positive integer from a negative integer correctly? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  | Subtract a negative integer from a positive integer. | Appreciate subtracting a negative integer from a positive integer correctly. | Subtraction of a negative integer from a positive integer, e.g. $\left({ }^{+} 7\right)-(-3)=\left({ }^{+} 10\right)$ | - "+" and "-"to subtract a negative integer from a positive integer. | - subtract a negative integer from a positive integer correctly? |  |
| Use of Symbols |  | Identify symbols that represent a number of items/articles. |  |  | Use of symbols. | Showing on chart examples of the ways in which symbols can be used to represent the addition of two like sets, e.g. 3 bowls +2 bowls $=5$ bowls can be represented as $3 b+2 b=5 b$. | Can students: <br> - identify symbols that represent a number of items/ articles? | Integrated Science, e.g. using symbols to identify quantity, constants and variables. |
|  |  | Identify variables, coefficient, constants. |  |  | A variable is usually a letter, e.g. in $5 b+4$, b is the variable. <br> A coefficient is the number in front of the variable, e.g. in $5 b+4$, 5 is the coefficient of $b$. <br> The value of a constant does not change, e.g. in $5 b+4,4$ is the constant. | Showing on chart examples of variables, coefficients and constants in algebraic expressions. | - identify variables coefficients and constants in algebraic expressions? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  | Use symbols to represent ideas. |  |  |  | The use of symbols to represent ideas, e.g. Jo is 13 years old. How old will he be in $y$ years time, can be represented by $13+y$. | Using symbols to represent ideas. | Can students use symbols to represent ideas? |  |
| Addition and Subtraction of Algebraic Terms |  |  | Add and subtract algebraic expressions with like terms. | Enjoy adding and subtracting algebraic expressions with like terms. | Addition and subtraction of algebraic expressions with like terms, e.g. $\begin{aligned} 2 \mathrm{a}+4 \mathrm{a} & =(2+4) \mathrm{a} \\ & =6 \mathrm{a} \\ 4 \mathrm{a}-2 \mathrm{a} & =(4-2) \mathrm{a} \\ & =2 \mathrm{a} \end{aligned}$ | Adding and subtracting Algebraic expressions with like terms. | Can students add and subtract algebraic expressions with like terms? | Language, e.g. writing a letter to a friend explaining concepts learnt or a paragraph explaining what was learnt and asking possible questions. |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  | Add and subtract algebraic expressions with unlike terms. | Obtain satisfaction from adding and subtracting algebraic expressions with unlike terms. | Addition and subtraction of algebraic expressions with unlike terms, e.g. $\begin{aligned} & 2 a+2 b+2 a+b= \\ & 2 a+2 a+(2 b+2 b= \\ & (2+2) a+(2+1) b= \\ & 4 a+3 b \end{aligned}$ $\begin{aligned} & 6 c-3-2 c+10 d= \\ & 6 c-2 c+10 d-3 d= \\ & (6-2) c+(10-3) d= \\ & 4 c+7 d \end{aligned}$ | adding and subtracting algebraic expressions with unlike terms. | Can students add and subtract algebraic expressions with unlike terms? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Multiplication of Algebraic |  |  | Multiply algebraic expressions with |  | Multiplication of algebraic | Multiplying algebraic | Can students: |  |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Division of <br> Algebraic <br> Terms |  |  | Divide algebraic terms. | Practise dividing algebraic terms. | Division of algebraic terms, e.g. <br> (i) $\mathrm{a} \div \mathrm{b}=\frac{a}{b}$ $\begin{aligned} & \text { (ii) }(\mathrm{a} \div 5 \mathrm{ab})= \\ & \frac{a}{5 a b}=\frac{1}{5 b} \\ & \text { (iii) } \mathrm{a}^{4} \div \mathrm{a}^{2}= \\ & \frac{a \times a \times a \times a}{a \times a} \\ & =\mathrm{a}^{2} \end{aligned}$ <br> Encouraging students to practise dividing algebraic terms. | Dividing algebraic terms. | Can students divide algebraic terms? <br> Do students practise dividing algebraic terms? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  |  | Strategies |  |  |
| Substitution |  |  | Determine the value of an algebraic expression by replacing variables with numerical values. |  | Substitution | Guiding students through steps to be taken when substituting numerical values for variables, e.g. when $\mathrm{m}=2$, the value of $3 \mathrm{~m}^{3}$ is $3 \times 2 \times 2 \times 2$ $=24$ | Can students determine the value of an algebraic expression by replacing variables with numerical values? <br> Unit Test |  |

SET OPERATIONS

| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |


| Intersection of Sets | Identify common elements in two sets. <br> Identify the symbol that represents the intersection of two sets. <br> List the elements in the intersection of two sets. |  |  | Common elements in two sets. <br> The symbol that represents the intersection of sets, that is ' $\cap$ '. <br> The elements in the intersection of two sets, e.g. $\begin{aligned} & \mathrm{S}=\{\mathrm{s}, \mathrm{c}, \mathrm{~h}, \mathrm{o}, \mathrm{l}\} \\ & \mathrm{H}=\{\mathrm{h}, \mathrm{o}, \mathrm{l}, \mathrm{y}\} \\ & \mathrm{S} \cap \mathrm{H}=\{\mathrm{h}, \mathrm{o}, \mathrm{l}\} \\ & \hline \end{aligned}$ | Showing on chart: <br> - examples of common elements in two sets. <br> - the symbol that represents the intersection of sets. <br> Listing the elements in the intersection of two sets. | Can students: <br> - identify common elements in two sets? <br> - identify the symbol that represents the intersection of two sets? <br> - list the elements in the intersection of two sets? | Social Studies, e g. Identifying commonalities in two sets of specimens. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { Disjoint } \\ & \text { Sets } \end{aligned}$ | Identify disjoint sets. |  |  | Disjoint sets: sets that have no elements in common. | Showing on chart examples of disjoint sets. | Can students identify disjoint sets? | Social Studies, e.g. Set A = \{Rose Hall, Georgetown, New Amsterdam \} <br> Set B = \{Ann's Grove, Golden Grove |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Union of Sets |  |  | Combine the elements of two sets to form a new set. |  | Joining two sets to form a new set. | Combining the elements of two sets to form a new set and noting the number of elements in each set. | Can students: <br> - combine the elements of two distinct sets to form a new set? |  |
|  |  | Identify the symbol that represents the union of sets. |  |  | The symbol that represents the union of sets, that is ' $\cup$ '. | Showing on chart the symbol that represents the union of sets. | - identify the symbol that represents the union of sets? |  |
|  |  | List the elements in the union of two sets. |  |  | The elements in the union of two sets, e.g. $\begin{aligned} & \mathrm{P}=\{1,2,3,4\} \\ & \mathrm{Q}=\{0,1,2\} \\ & \mathrm{S} \cup \mathrm{H}=\{0,1,2, \\ & 3,4\} \end{aligned}$ | Listing the elements in the union of two sets. | - list the elements in the union of two sets? | Integrated Science, e.g. grouping to make a compound/mix with specification given. |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| The Complement of a Set |  | List the elements in the complement of a given set. |  |  | Complement of a set, e.g. $\begin{aligned} & \mathrm{U}=\{0.1,2,3\} \\ & \mathrm{A}=\{0,2\} \\ & \mathrm{A}^{\prime}=\{1,3\} \end{aligned}$ | Listing the elements in the complement of a set. | Can students: <br> - list the elements in the complement of a given set? | Environmental Education, e.g. $\mathrm{U}=\{\text { Solid }$ <br> waste in the home environment \} |
|  |  |  | Differentiate between the universal set, a subset and the complement of the subset. |  |  | Discussing the difference between the universal set, a subset and the complement of the subset. | - differentiate between the universal set, a subset and the complement of the subset? | $A=\{$ Bio degradable solid waste in the home environment $\}$ |
|  |  |  |  |  |  |  |  | $\mathrm{A}^{\prime}=\{$ Non-bio degradable solid waste in the home environment $\}$ |


| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Venn Diagrams | Draw Venn diagrams to show subsets, intersection of sets, union of sets, disjoint sets. |  |  | Enjoying drawing Venn diagrams. | Venn diagrams, e.g. <br> $B$ is a subset of $A$. $\mathrm{B} \subset \mathrm{~A}$ | Small group activities: <br> Drawing Venn diagrams to show: <br> - subsets | Can students draw Venn diagrams to show: <br> - subsets? |  |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  | U | - disjoint sets | - disjoint sets? | Environmental Education, e.g |
|  |  |  |  |  |  |  |  | $\left.\mathrm{U}=\begin{array}{l} \{\mathrm{Vine} \\ \text { Plants } \end{array}\right\}$ |
|  |  |  |  |  |   |  |  | $\begin{aligned} \mathrm{A}= & \{\text { Fruit } \\ & \text { bearing } \\ & \text { vines in } \\ & \text { Guyana }\} \end{aligned}$ |
|  |  |  |  |  | Disjoint Sets |  |  |  |
|  |  |  |  |  |  |  |  | $A$ and $B$ are disjoint sets. |

COMPUTATION 2


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Ratio |  |  | Demonstrate an understanding of ratio as a comparison between two quantities that are related to each other. <br> Share quantities in a given ratio. | Enjoy sharing quantities in given ratios. | Expression of ratios as fractions in their simplest form, e.g. 1 to $2=1: 2$ $=\frac{1}{2}$. <br> Share quantities in given ratios. | Using examples from the students' environment, e.g. buttons, shapes, scores from games and finding representation of the objects in terms of quantity. <br> Expressing ratios as fractions in their simplest form. <br> Demonstrating the sharing of quantities in given ratios. Actual money could be used. | Can students demonstrate an understanding of ratio as a comparison between two quantities that are related to each other? <br> Can students share quantities in a given ratio? | Agriculture Science, e.g. fertilizer application in a given ratio mixture per hectare. |
| Average |  |  | Calculate the average or mean of a given set of numerical information. |  | Average | Small group activity, e.g. using a scale to measure the mass of each group member and calculating the average or mean mass of the group. | Can students use a scale to measure mass and calculate the average or mean mass of a group of objects? <br> Unit Test | Agriculture Science, e.g. the calculation of mean floor space per bird when caring for growing broilers. |

GEOMETRY 1

| Topic | Objectives |  |  |  | Content | Activities/ Materials/ | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |







| Topic | Objectives |  |  |  | Content | Activities// <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  | List the properties of regular polygons. |  |  |  | Listing the properties of regular polygons. | Can students: <br> - list the properties of regular polygons? |  |
|  | Draw shapes of regular polygons. |  |  |  |  | Drawing shapes of regular polygons. | - draw the shapes of regular polygons? | Technical Drawing e.g.. constructing regular polygons. |
|  |  |  | Calculate the size of the interior angles of a regular polygon. |  |  | Calculating the size of the interior angles of a regular polygon. | - calculate the size of the interior angles of a regular polygon? |  |
|  |  |  | Calculate the sum of the interior angles of a regular polygon. |  |  | Calculating the sum of the interior angles of a regular polygon. | - Can students calculate the sum of the interior angles of a regular polygon? |  |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Constructions | Construct the perpendicular bisector of a line. |  |  | Enjoy constructing the perpendicular bisector of lines. | Perpendicular bisector of a line. | Constructing the perpendicular bisector of straight lines using ruler and compasses only. | Can students: <br> - construct the perpendicular bisector of a line using ruler and compasses only? | Technical Drawing, e.g. <br> - constructing the perpendicular bisector of a straight line. |
|  | Bisect a given angle. |  |  | Enjoy bisecting angles. | Bisection of angles. | Bisecting angles using ruler and compasses only. | - bisect a given angle using ruler and compasses only? | - bisecting angles. |
|  | Construct angles of $90^{\circ}, 45^{\circ}, 60^{\circ}$ and $30^{\circ}$ |  |  | Enjoy constructing angles of $90^{\circ}$, $45^{\circ}, 60^{\circ}$ and $30^{\circ}$ using ruler and compasses only. |  | Constructing angles of $90^{\circ}$, $45^{\circ}, 60^{\circ}$ and $30^{\circ}$ using ruler and compasses only. | Can students construct angles of $90^{\circ}, 45^{\circ}, 60^{\circ}$ and $30^{\circ}$ using ruler and compasses only? | - constructing angles of $90^{\circ}$, $45^{\circ}, 60^{\circ}$ and $30^{\circ}$. |


| Topic Area | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  |  |  | Small group activities: | $\begin{aligned} & \hline \text { Can students } \\ & \text { construct } \quad a \\ & \text { triangle given: } \end{aligned}$ | Technical Drawing .e.g. |
|  | Construct a triangle given the lengths of the three sides. |  |  | Enjoy constructing triangles with ruler and compasses only. | Construction of triangles. | Constructing triangles given: <br> - the lengths of the three sides using ruler and compasses only. | - the length of the three sides using ruler and compasses only? | - the construction of triangles. |
|  | Construct a triangle when two sides and the included angle are given. |  |  |  |  | - two sides and the included angle. | - two sides and the included angle? |  |
|  | Construct a quadrilateral. |  |  | Enjoy constructing quadrilaterals. | Construction of quadrilaterals. | Constructing quadrilaterals from given information. | Can students construct a quadrilateral from given information? <br> Unit Test | - the construction of quadrilaterals. |

RELATIONS

| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Relations |  | Identify a relation. |  |  | Relations | Showing on chart examples of relations. | Can students identify a relation? |  |
| Arrow <br> Diagrams | Draw an arrow diagram. | Identify an arrow diagram. |  | Appreciate arrow diagrams. | Arrow diagrams. <br> The objects and image in any particular relation can be shown on an arrow diagram. <br> The arrow always leaves the object in the domain and points to the image in the range. | Showing on chart arrow diagrams. <br> Drawing arrow diagrams. | Can students: <br> - identify an arrow diagram? <br> - draw an arrow diagram? |  |


| Area | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  | Classify relations. |  |  |  | Types of relations: <br> One-to-one each object has only one image. <br> Many-to-one two or more objects have the same image. <br> One-to-many - one object has more than one image. <br> Many-to-many - one object has more than one image and also two or more objects. | Classifying relations according to the way in which the objects and images are related. | Can students classify a relation? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Ordered Pairs |  |  |  |  | Ordered pairs | Small group activities: | Can students: |  |
|  |  | List the members of the domain for a set of ordered pairs. |  |  |  | - Listing the members of the domain for a set of ordered pairs. | - list the members of the domain for a set of ordered pairs? |  |
|  |  | List the members of the range for a set of ordered pairs. |  |  |  | - Listing the members of the range for a set of ordered pairs. | - list the members of the range for a set of ordered pairs? |  |
|  |  | List ordered pairs from an arrow diagram. |  |  |  | - Listing all the ordered pairs shown on an arrow diagram. | - list the ordered pairs shown on an arrow diagram? |  |
|  |  | List sets of ordered pairs that satisfy a relation. |  |  |  | - Writing sets of ordered pairs that satisfy given relations. | - write sets of ordered pairs that satisfy a relation? |  |
|  |  | Write the rule of a relation. |  |  |  | - Writing the rule of a relation. | - write the rule of a relation? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Co-ordinates |  | Recognise the co-ordinate plane. |  | Appreciate the coordinate plane. | The coordinate plane is sometimes called a rectangular grid. | Drawing a number line using 0 and positive integers from 1 to 6 and negative integers form -1 to 6 . Up turning the paper and drawing another number line intersecting the first at right angles and using 0 and the positive integers from 1 to 6 and from -1 to 6. 0 remains at the same point. <br> When the two lines come together this way they form a co-ordinate plane. | Can students recognise a coordinate plane. |  |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Graphs | Construct the graph of a relation represented by ordered pairs. |  |  | Enjoy drawing graphs of relations represented by ordered pairs. | Graph of a relation represented by ordered pairs. | Small group activities: <br> - plotting ordered pairs of the given relation on a co-ordinate plane. <br> - joining the points corresponding to each ordered pair. | Can students construct the graph of a relation represented by ordered pairs? <br> Unit Test | Integrated Science, e.g. drawing the rainfall graphs for different locations. |

STATISTICS

| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Pictographs |  | Identify pictographs. |  | Appreciate pictographs. | Pictographs: an attractive way of presenting numerical information. The pictures give a quick and easy meaning to statistical data. | Using chart to show examples of pictographs. | Can students: <br> - identify a pictograph? |  |
|  | Construct pictographs to illustrate given information. |  |  | Enjoy constructing pictographs. | Construction of pictographs. | Guiding students in constructing pictographs to illustrate given information. | - construct a pictograph?. | Social Studies, e.g. constructing a pictograph to illustrate Amerindian tribes in Guyana. |
|  | Interpret pictographs. |  |  |  | Interpretation of pictographs. | Interpreting the information illustrated on a pictograph. | - interpret pictographs? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  | Willing to discuss information illustrated on pictographs. |  | Discussing information illustrated on pictographs. | Are students willing to discuss information illustrated on pictographs? |  |
| Bar Chart |  | Identify bar charts. |  | Appreciate bar charts. | Bar Charts <br> Another way of displaying information is on a bar chart. <br> A bar chart has a heading. A scale is usually on the vertical axis. The bars do not touch. <br> The length of the bars represent numerical information. | Using chart to show examples of bar charts. | Can students identify a bar chart? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Understanding | Knowledge | Attitude |  |  |  |  |
|  | Construct bar charts to illustrate given information. |  |  | Enjoy constructing bar charts. | Construction of bar charts. | Guiding students in constructing bar charts to illustrate given information. | Can students: <br> - construct bar charts? | Agriculture Science, e.g. constructing bar charts to show the major components of the soil. |
|  | Interpret bar charts. |  |  |  | Interpretation of bar charts. | Interpreting bar charts. | - interpret the information illustrated on a bar chart? |  |
|  |  |  |  | Willing to discuss information illustrated on bar charts. |  | Discussing information illustrated on bar charts. | - Are students willing to discuss the information illustrated on a bar chart? |  |
| Pie Charts |  | Identify pie charts. |  | Appreciate pie charts. | Pie Chart: a circle graph in which sections of the circle represent fractions, degrees, percentages. | Using chart to show examples of pie charts. | Can students identify a pie chart? |  |


| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  | Construct pie charts from given information. <br> Interpret pie charts. |  |  | Enjoy constructing pie charts. | Construction of pie charts. <br> Interpretation of pie charts. | Calculating each section of the circle in degrees or percentages from given information. <br> Representing the information on the circle. <br> Interpreting information represented on pie charts. | Can students: <br> - construct a pie chart? <br> - use pie charts to answer questions and solve problems? <br> Unit Test | Agriculture Science, e.g. construction of a pie chart to show the composition of a loam soil. |

GEOMETRY 2
GEOMETRY 2

| Topic | Objectives | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of <br> Integration |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  | Cond |


| Common Solids |  | Recognise common solids. | Select common solids. |  | Common solids: cube, cuboid, pyramid, cylinder, sphere. <br> The general characteristics of common solids: <br> The faces may be flat or curved. <br> An edge is the line where two faces meet. Edges may be straight or curved. <br> A vertex is the point where three or more edges meet. | Displaying models of common solids such as: cube, cuboid, pyramid, cylinder, sphere. <br> Observing the general characteristics of common solids. <br> Manipulating models of common solids. <br> Selecting common solids from among models of various objects. | Can students: <br> - recognise common solids? <br> - select common solids? | Language, e.g. writing descriptions of a cube, cuboid, pyramid, cylinder, sphere. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Properties of Common Solids |  | List the properties of cube, cuboid, pyramid, cylinder, sphere. |  |  | Properties of common solids: cube, cuboid, pyramid, cylinder, sphere, e.g. <br> - A cube has 6 square faces, 12 straight edges and 8 vertices. <br> - A cuboid has 6 rectangular faces, 12 straight edges and 8 vertices. <br> - A pyramid with n -sided base will have $n$ triangular faces meeting at a point. <br> - A cylinder has 2 plane faces and one curved surface. It has 2 curved edges and no vertices. | Having students examine the faces, edges and vertices of common solids and listing what they observe. | Can students list the properties of common solids? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
|  |  |  |  | Willing to discuss the properties of common solids. |  | Discussing the properties of common shapes. | Are students willing to discuss the properties of common solids? |  |
| Drawing Common Shapes | Draw the skeleton views of common solids. |  |  | Enjoy drawing the skeleton views of common solids. | Skeleton views of common solids. | Small group activities: <br> - drawing the skeleton views of a cube, cuboid, pyramid, cylinder, sphere. | Can students: <br> - draw the skeleton views of a cube, cuboid, pyramid, cylinder, sphere? | Technical Drawing, e.g. drawing the skeleton views of common solids. |
|  | Draw the nets of common solids. |  |  |  | Nets of common solids. | - drawing the nets of solids. <br> - matching net with name of solid. <br> - folding nets to make models of solids. | - draw the net of common solids? <br> - match the net with name of solid? <br> - fold a net to make a model of a solid? <br> Unit Test | Technical Drawing, e.g. drawing the nets of common solids. |


| Topic | Objectives |  |  |  | Content | Activities/ Materials/ Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Verbal Statements and Symbolic Expressions |  |  | Convert verbal statements into symbolic expressions. | Practise converting verbal statements into symbolic expressions. | Conversion of verbal statements into symbolic expressions, e.g. if the length of a rectangle is $\boldsymbol{x} \mathrm{cm}$ and the width ycm , then an expression for the perimeter of the rectangle can be: <br> Perimeter $=$ $\begin{aligned} & (x+x+y+y) \mathrm{cm} \\ = & (2 x+2 y) \mathrm{cm} \end{aligned}$ | Converting verbal statements into symbolic expressions. <br> Encouraging students to practise converting verbal statements into symbolic expressions. | Can students convert verbal statements into symbolic expressions? <br> Do students practice converting verbal statements into symbolic expressions? |  |
| The Distributive Law | Apply the distributive law to simply algebraic expressions. |  |  |  | The distributive laws: $\begin{aligned} & (a \times b)+(c \times b)= \\ & b(a+c) \\ & (a \times b)-(c \times b)= \\ & b(a-c) \end{aligned}$ | Applying the distributive law to simplify algebraic expressions, e.g. $\begin{aligned} & (3 \times y)+(4 \times y) \\ = & y(3+4)=7 y \end{aligned}$ | Can students apply the distributive law to simplify algebraic expressions? |  |



| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Inequations |  | Identify inequations |  |  | Inequations, e.g. $12>11$ or $11<12$. | Observing examples of inequations. | Can students: <br> - identify an inequation? | Enviromental Education,e.g. |
|  | Use the symbols < and $>$ to convert verbal statements into algebraic expressions. |  |  |  | The use of the symbols < and $>$ in the conversion of verbal statements into algebraic expressions, e.g. if the length of a rectangle is one cm and the width 4 cm less than the length, then the statement can be expressed by the inequation $(a-4)<a$. | Using the symbols < or > to convert verbal statements into algebraic expressions. | - use the symbols $<$ and $>$ to convert verbal statements into algebraic jhexpressions? | Number of predators < Number of Prey in an environment. <br> Number of insects > Number of humans on the earth. |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Indices |  | Identify the base and index of an expression. |  |  | Indices | Showing on chart examples of indices and pointing out the base and index. | Can students: <br> - identify the base and index of an expression? |  |
|  |  |  | Write algebraic expressions in index form. |  | Algebraic expressions in index form, e.g. $3 \times a \times a \times a=3 a^{3} .$ | Writing algebraic expressions in index form. | - write algebraic expressions in index form? |  |
|  | Use the laws of indices to manipulate expressions |  |  |  | Multiplication and division of expressions with the same base, e.g. | Using the laws of indices to: |  |  |
|  | indices. |  |  |  | $\begin{aligned} & 8^{2} \times 8^{2} \times 8^{2}=8^{2+2+2}= \\ & 8^{6} \\ & 8^{6} \div 8^{2}=8^{6-2}=8^{4} . \end{aligned}$ | - multiply indices with the same base. <br> - divide indices with the same base. | - use the laws of indices to manipulate expressions with positive indices? |  |
|  |  |  |  |  |  |  | Unit Test |  |

## CONSUMER ARITHMETIC

| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Profit |  |  | Explain the concept cost price, selling price and profit. |  | Cost price, selling price and profit. | Explaining cost price, selling price and profit. <br> Demonstrating that if the selling price of an article is greater than the cost price, then there is a profit. | Can students explain the concepts of cost price, selling price and profit? |  |
|  |  |  |  |  |  | Calculating: | Can students calculate: |  |
|  |  |  | Calculate profit. |  | $\begin{aligned} & \text { Profit = Selling } \\ & \text { Price }- \text { Cost } \\ & \text { Price. } \end{aligned}$ | - profit. | - profit? | Agriculture Science, e.g. finding the profit made after a sale of chickens. |
|  |  |  | Calculate cost price given selling price and profit. |  | Cost price $=$ Selling Price Profit. | - cost price given selling price and profit. | - cost price given selling price and profit? |  |
|  |  |  | Calculate selling price. |  | Selling price $=$ Cost Price + Profit. | - selling price. | - selling price? |  |



## MEASUREMENT 2

| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Volume |  |  | Explain the concept of volume. |  | Volume: The amount of three dimensional space a solid occupies. | Discussing the concept of volume. | Can students: <br> - explain the concept of volume? |  |
|  |  |  | Calculate the volume of cubes and cuboids. |  | Volume of a cube $=l^{3}$ <br> Volume of a cuboid $=\boldsymbol{l} \times \mathrm{b} \times \mathrm{h}$ | Making models of cubes and cuboids and calculating their volume. | - calculate the volume of a cube and cuboid? | Industrial Arts, e.g. calculating the volume of cubes and cuboids. |
|  | Solve problems involving volume. |  |  |  |  | Solving problems involving volume. | - solve problems involving volume? |  |
| Mass |  |  | Explain the concept of mass. |  | Mass is the amount of matter in an object. <br> The mass of an object remains the same no matter where the object is located. | Discussing the concept of mass. | Can students explain the concept of mass? | Home <br> Economics, e.g. finding the mass of flour or sugar or butter for baking cakes or bread. |
|  | Solve problems involving mass. |  |  |  | The basic unit of mass is the gram. | Solving problems involving mass. | Can students solve problems involving mass? |  |


| Topic | Objectives |  |  |  | Content | Activities/ <br> Materials/ <br> Strategies | Evaluation | Areas of Integration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Skills | Knowledge | Understanding | Attitude |  |  |  |  |
| Temperature | Read the temperature of water. |  |  | Appreciate the use of the thermometer to read temperature. | Temperature: the measure of hotness or coldness of an object. <br> The SI unit for measuring temperature is degree Celsius ( ${ }^{\circ} \mathrm{C}$ ) | Reading the thermometer after immersing it in hot or cold water. | Can students read temperature? |  |
| Time | Read the time on 12hour and 24hour clocks. |  |  |  | Time | Reading the time on 12-hour, and 24-hour clocks. | Can students: <br> - read time on 12-hour, and 24-hour clocks? |  |
|  |  |  | Change 12-hour clock times to 24-hour clock times and vice versa. |  |  | Changing 12hour clock times to 24 -hour clock times and vice versa. | - change 12 -hour clock times to 24-hour clock times and vice versa? |  |
|  | Solve problems involving time. |  |  |  |  | Let students solve problems involving time. | - solve problems involving time? <br> Unit Test |  |

